Publications

← Back
Journal/Book: Nucleic Acids Res
Published: 2007
Pages: 572–583
Volume: 35
Issue:
Accession no.: 137
Publisher:
ISBN:

Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.

Jonas Noeske, Janina Buck, Boris Fürtig, Hamid R Nasiri, Harald Schwalbe, Jens Wöhnert
Abstract:
Riboswitches are highly structured elements in the 5'-untranslated regions (5'-UTRs) of messenger RNA that control gene expression by specifically binding to small metabolite molecules. They consist of an aptamer domain responsible for ligand binding and an expression platform. Ligand binding in the aptamer domain leads to conformational changes in the expression platform that result in transcription termination or abolish ribosome binding. The guanine riboswitch binds with high-specificity to guanine and hypoxanthine and is among the smallest riboswitches described so far. The X-ray-structure of its aptamer domain in complex with guanine/hypoxanthine reveals an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base pairing interactions. We analyzed the conformational transitions of the aptamer domain induced by binding of hypoxanthine using high-resolution NMR-spectroscopy in solution. We found that the long-range base pairing interactions are already present in the free RNA and preorganize its global fold. The ligand binding core region is lacking hydrogen bonding interactions and therefore likely to be unstructured in the absence of ligand. Mg2+-ions are not essential for ligand binding and do not change the structure of the RNA-ligand complex but stabilize the structure at elevated temperatures. We identified a mutant RNA where the long-range base pairing interactions are disrupted in the free form of the RNA but form upon ligand binding in an Mg2+-dependent fashion. The tertiary interaction motif is stable outside the riboswitch context.
Imprint Privacy
© Copyright 2024
Prof. Dr. Harald Schwalbe
Institut für Organische Chemie und Chemische Biologie
Johann Wolfgang Goethe Universität
Max-von-Laue-Str. 7
D-60438 Frankfurt am Main
Website powered by