← Back
Journal/Book: J Am Chem Soc
Published: 2007
Pages: 1179–1189
Volume: 129
Accession no.: 129

Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study.

Jürgen Graf, Phuong H Nguyen, Gerhard Stock, Harald Schwalbe
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combining the accuracy of the measured scalar coupling constants and the atomistic detail of the all-atom MD simulations with explicit solvent, the thermal populations of the peptide conformational states are determined with an uncertainty of <5 %. Trialanine samples mainly ( approximately 90%) a poly-l-proline II helix-like structure, some ( approximately 10%) beta extended structure, but no alphaR helical conformations. No significant change in the distribution of conformers is observed with increasing chain length (Ala(3) to Ala(7)). Trivaline samples all three major conformations significantly. Triglycine samples the four corner regions of the Ramachandran space and exists in a slow conformational equilibrium between the cis and trans conformation of peptide bonds. The backbone angle distribution was also studied for the segment Ala3 surrounded by either three or eight amino acids on both N- and C-termini from a sequence derived from the protein hen egg white lysozyme. While the conformational distribution of the central three alanine residues in the 9mer is similar to that for the small peptides Ala(3)-Ala(7), major differences are found for the 19mer, which significantly (30-40%) samples alphaR helical stuctures.
Imprint Privacy
© Copyright 2024
Prof. Dr. Harald Schwalbe
Institut für Organische Chemie und Chemische Biologie
Johann Wolfgang Goethe Universität
Max-von-Laue-Str. 7
D-60438 Frankfurt am Main
Website powered by